

Профессиональная автохимия и все для автомойки Профессиональные моющие средства для предприятий пищевой промышленности и АПК Профессиональные моющие средства для клининга

ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ БЕСПЕННОГО НИЗКОТЕМПЕРАТУРНОГО ДЕЗИНФИЦИРУЮЩЕГО СРЕДСТВА НА ОСНОВЕ НАДУКСУСНОЙ КИСЛОТЫ И ПЕРЕКИСИ ВОДОРОДА «TANK CAD 1415/3» ТМ «TANK»

ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПРЕДПРИЯТИЙ, ПРЕДПРИЯТИЙ ПИЩЕВОЙ И ПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ (В ТОМ ЧИСЛЕ ПТИЦЕПЕРАРАБАТЫВАЮЩИХ, РЫБОПЕРЕРАБАТЫВАЮЩИХ, МЯСОПЕРЕРАБАТЫВАЮЩИХ, МОЛОЧНЫХ, ХЛЕБОПЕКАРНЫХ, КОНДИТЕРСКИХ И ПИВОБЕЗАЛКОГОЛЬНЫХ ПРЕДПРИЯТИЙ), ОБЩЕСТВЕННОГО ПИТАНИЯ, АДМИНИСТРАТИВНЫХ, ОБЩЕОБРАЗОВАТЕЛЬНЫХ И ДРУГИХ ОБЩЕСТВЕННЫХ УЧРЕЖДЕНИЙ

ПРОДУКЦИЯ ИЗГОТОВЛЕНА НА ПРЕДПРИЯТИИ СИСТЕМА МЕНЕДЖМЕНТА КАЧЕСТВА КОТОРОГО СООТВЕТСТВУЕТ ТРЕБОВАНИЯМ ГОСТ Р ИСО 9001-2015 (ISO 9001:2015).

СОСТАВИЛ Руководитель

инновационной лаборатории:

УТВЕРДИЛ

Генеральный директор:

Санников С.А

Телеусова М.В.

Дата создания инструкции: Дата последней ревизии: 23.01.2017 30.04.2020

ИНСТРУКЦИЯ

по применению для сельскохозяйственных предприятий, предприятий пищевой и перерабатывающей промышленности (в том числе птицеперарабатывающих, рыбоперерабатывающих, мясоперерабатывающих, молочных, хлебопекарных, кондитерских и пивобезалкогольных предприятий), общественного питания, административных, общеобразовательных и других общественных учреждений

Беспенного низкотемпературного дезинфицирующего средства на основе надуксусной кислоты и перекиси водорода «TANK CAD 1415/3» ТМ «TANK»

1. Наименование продукции и производитель

Наименование: Беспенное низкотемпературное дезинфицирующее средство на основе надуксусной кислоты и перекиси водорода «TANK CAD 1415/3» ТМ «TANK»;

ТУ 9392-012- 68251848-2016;

Производитель: ООО ПК «Вортекс», 426039, УР, г. Ижевск, ул.

Новосмирновская, 14.; Тел./факс: 8 (800) 234-36-96.

2. Назначение

Средство предназначено для:

- дезинфекции оборудования, инвентаря, тары, поверхностей производственных и подсобных помещений, трубопроводов, коммуникаций, установок ультрафильтрации, обратного осмоса, оборотных бутылей, упаковки;
- дезинфекции автотранспорта (в том числе транспортных средств по перевозке продуктов питания);
- дезинфекции систем питьевого водоснабжения, систем ниппельного или соскового поения животных и птиц, подкисления питьевой воды, а также систем промышленной канализации;
- обеззараживания тушек птиц в установках контактного и воздушно-капельного охлаждения;
 - дезинфекции овощей, фруктов, зелени;
 - дезинфекции скорлупы яиц;
 - для обеззараживания уборочного материала и медицинских отходов;

• дезинфекции изделий медицинского назначения, медицинского инвентаря, эндоскопов, посуды, белья.

3. Области применения

Беспенное низкотемпературное дезинфицирующее средство на основе надуксусной кислоты и перекиси водорода «Тапк CAD 1415/3» применяется на предприятиях АПК, продовольственной торговли и общественного питания, пищевой и перерабатывающей промышленности (по производству и переработке мяса, птицы, производству хлебобулочных и мучных кондитерских изделий, производству молока и молочной продукции, переработке и консервированию рыбы, пивоваренной и безалкогольной промышленности, по переработке и консервированию фруктов и овощей, производству продуктов мукомольной и крупяной промышленности, крахмала и крахмалосодержащих продуктов и др.), а также в лечебнопрофилактических, детских, дошкольных, школьных общеобразовательных, медицинских и научных учреждениях.

Средство эффективно против грамположительных и грамотрицательных бактерий, в том числе возбудителей внутрибольничных инфекций, микобактерий туберкулёза, грибов (включая дрожжеподобные грибы рода Кандида, дерматофитии), вирусов (острые респираторные вирусные инфекции, герпес, полиомиелит, гепатиты всех видов, включая гепатиты A, B и C, ВИЧ-инфекция, аденовирус и др.).

4. Инструкция по применению

Таблица № 1 – Приготовление рабочих растворов средства «TANK CAD 1415/3»

Концентрация	Концентрация	Количество средства и воды, необходимое для			
рабочего	рабочего	приготовления рабочего раствора объемом:			
раствора	раствора	100 л.		1000 л.	
средства, % (по	средства, %				
средству)	(по НУК)	Средство,	Вода, л	Средство,	Вода, л
		МЛ		Л	
0,03	0,005	30	99,97	0,3	999,7
0,05	0,008	50	99,95	0,5	999,5
0,07	0,012	70	99,93	0,7	999,3
0,1	0,017	100	99,90	1,0	999,0
0,15	0,025	150	99,85	1,5	998,5
0,2	0,033	200	99,80	2,0	998,0
0,25	0,04	250	99,75	2,5	997,5
0,3	0,05	300	99,70	3,0	997,0
0,6	0,1	600	99,40	6,0	994,0
1,0	0,17	1000	99,00	10,0	990,0
1,5	0,25	1500	98,50	15,0	985,0

Объём концентрата средства «TANK CAD 1415/3», требуемого для приготовления рабочего раствора, определяют по формуле:

Беспенное низкотемпературное дезинфицирующее средство на основе надуксусной кислоты и перекиси водорода «TANK CAD 1415/3»

$$\mathbf{V} = \frac{X \times B}{C \times \rho}$$

где, V – объем концентрата средства;

Х – рекомендуемая концентрация НУК в рабочем растворе (%);

В — количество (объèм) приготавливаемого рабочего раствора (л), (плотность рабочего раствора — 1,0 кг/м 3);

С – исходная концентрация (массовая доля) надуксусной кислоты в средстве «TANK CAD 1415/1» (%);

р – плотность средства ($\kappa r/m^3$) равная 1,13 $\kappa r/m^3$.

Примечание. Рабочие растворы средства готовятся непосредственно перед использованием в отдельной чистой емкости или непосредственно в чистой ванне, резервуаре, в моечной машине, в которой производится дезинфекция. Во всех случаях приготовления растворов в емкость сначала заливается необходимое количество воды, а затем добавляется концентрат препарата нужного объема или автоматически дозируют препарат в водный поток. Срок хранения рабочих растворов средства составляет 72 часа, после чего необходима проверка на содержание надуксусной кислоты (п. 7.5-7.6)

- 1. Для дезинфекции оборудования, трубопроводов, блоков розлива, тары и помещений использовать водный раствор препарата в концентрации 0,1-0,2% (0,015-0,03% по НУК). Готовить рабочий раствор рекомендуется непосредственно перед применением, соблюдая меры предосторожности (см. табл. приготовления растворов). Санитарная обработка поверхностей и объектов производится в соответствии с инструкциями для конкретных областей применения.
- 1.1. Обработать предварительно отмытое оборудование или изделие любым доступным способом: циркуляцией, погружением, орошением, СІРсистемах и т.п.
- 1.2. Продолжительность дезинфекции составляет 1-30 мин. при температуре от +1 до +35 $^{\circ}$ С.
- 1.3. После обработки промыть поверхности чистой водой (при необходимости использовать обеспложенную воду)
- 2. Для обеззараживания воды в ванне охлаждения и деконтаминации поверхности тушек птицы в концентрациях 0,03-0,10% (0,005 0,015%-по НУК) в зависимости от технологических условий предприятия. Для деконтаминации поверхности тушек птицы от сальмонелл в концентрациях 0,2-0,3% (0,03 0,05% по НУК) при экспозиции 25 минут.
- 3. Для обеззараживания скорлупы яиц используют 0,3% (0,05% по НУК) рабочий раствор средства.
- 3.1 Обеззараживание скорлупы яиц проводят одним из следующих методов:
- способом погружения яиц в 0,3% (0,05% по НУК) рабочий раствор при температуре (18 \pm 2 $^{\circ}$ C) на 2 минуты;

- способом орошения яиц в 0,3% (0,05% по НУК) рабочий раствор при температуре ($18\pm2~^{\circ}$ C) при времени дезинфекционной выдержки 2 минуты.
- 3.2 После обеззараживания яйца промывают в проточной воде в течение 2 минут.
- 4. Для обеззараживания овощей, фруктов, зелени используют 0,4% (0,06% по НУК) рабочий раствор средства.

Овощи, фрукты, зелень погружают в раствор средства на 30 мин при температуре от +10 до +30 °C, после чего их промывают в проточной воде в течение 2 мин в зависимости от концентрации рабочего раствора.

- 5. Для обеззараживания тушек птиц методом контактного или воздушно-капельного охлаждения применяют 0,3% (0,05% по НУК) раствор средства при экспозиции 25 мин.
- 5.1 Охлаждение потрошенных тушек в растворе средства осуществляют при температуре раствора от 0 $^{\circ}$ C до плюс 10 $^{\circ}$ C в течение 25 минут. После охлаждения тушки направляют на сортировку, маркировку, взвешивание и упаковку.
- 5.2 Наличие остаточных количеств надуксусной кислоты в 1 см³ смывов тушек через 8 часов после завершения процесса охлаждения не допускается. Контроль за наличием остаточного количества надуксусной кислоты на тушках осуществляют в соответствии с п. 7.8 настоящей инструкции
- 6. Для аэрозольной обработки помещений использовать 1% (0,15% по НУК) раствор средства Tank CAD 1415/3.

Примечание.

Оптимальные концентрации и параметры (температура и время) подбираются в каждом конкретном случае в зависимости от задач дезинфекции, типа поверхности, условий и методов обработки, технологических условий предприятия.

5. Безопасность

По степени воздействия на организм человека средство относится к 3-му классу опасности (вещества умеренно опасные) по ГОСТ 12.1.007-76. Во время работы использовать средства индивидуальной защиты (очки, перчатки). При попадании на кожу или слизистые оболочки немедленно промыть большим количеством проточной воды. При необходимости обратиться к врачу. Способно разлагаться на воду и кислород при повышении температуры, на свету и в присутствии веществ, действующих каталитически (нелигированные и низколегированные стали, чугун, медь, латунь). Не допускается смешивать и хранить средство со щелочами, восстановителями, растворителями, солями металлов и горючими веществами.

6. Хранение

Хранить при температуре от -15^{0} С до $+30^{0}$ С в оригинальной упаковке от производителя. Допускается заморозка во время транспортировки. В случае

г. Ижевск 2021 Всего листов: 4

заморозки довести средство до комнатной температуры и тщательно перемешать. Срок годности — один год от даты изготовления, при условии соблюдения правил хранения.

7. Методы испытаний

7.1 Метод отбора проб

Отбор проб для проведения испытаний по внешнему виду упаковки осуществляется по ОСТ 6-15-90.1.

Отбор проб для проведения испытаний на соответствие количества средства в потребительской упаковке указанному количеству на этикетке осуществляется в соответствии с ГОСТ 22567.1, раздел 1 и ГОСТ 30024.

7.2 Определение внешнего вида, цвета и запаха

7.2.1 Оборудование

Внешний вид и цвет определяют визуально. Для этого химический стакан с внутренним диаметром около 35 мм наполняют средством до половины и рассматривают в проходящем свете.

Запах оценивают органолептически.

7.3 Определение плотности

Плотность средства при 200С определяют с помощью ареометра в соответствии с ГОСТ 18995-73 «Продукты химические жидкие. Методы определения плотности».

<u>7.4 Определение показателя активности водородных ионов (рН) 1%</u> водного раствора средства

Показатель активности водородных ионов (pH) 1% водного раствора средства измеряют потенциометрически по ГОСТ Р 50550-93 «Товары бытовой химии. Метод определения показателя активности водородных ионов (pH)»

Для приготовления 1% водного раствора средства используют дистиллированную воду по ГОСТ 6709-72.

7.5 Определение массовой доли перекиси водорода

Определение массовой доли перекиси водорода проводят методом перманганатометрического титрования.

7.5.1 Приборы, реактивы и растворы

Весы лабораторные общего назначения по ГОСТ 24104-2000 высокого (2) класса точности с наибольшим пределом взвешивания 200 г.

Секундомер механический по ГОСТ 5072-79.

Бюретки по ГОСТ 20292-74 вместимостью 25 см 3 .

Цилиндр по ГОСТ 1770-74 вместимостью 25 cm^3 .

г. Ижевск 2021 Всего листов: 4

Пипетки по ГОСТ 29227-91 вместимостью 1 и 10 cm^3 .

Колбы конические по ГОСТ 25336-82 со шлифом вместимостью 250 см 3 . Стаканчик СВ по ГОСТ 25336-82.

Калий марганцовокислый по ГОСТ 20490-75 чда; раствор концентрации точно $C(1/5 \text{ KMnO}_4) - 0.1 \text{ моль/дм}^3$ (0.1 н.), готовят по ГОСТ 25794.2-83.

Кислота серная по ГОСТ 4204-77 чда; раствор серная кислота : вода 1:4 по объему.

Вода дистиллированная по ГОСТ 6709-72.

7.5.2 Проведение анализа

В колбу для титрования вместимостью 250 см³ последовательно вносят 25 см³ воды, 20 см³ раствора серной кислоты и около 0,1 г средства, взвешенных с точностью до четвертого десятичного знака, перемешивают и титруют раствором марганцовокислого калия концентрации точно с (1/5 KMnO4) = 0,1 моль/дм³. Титрование проводят до светло-розовой окраски, не исчезающей в течение одной мин. Одновременно проводят в тех же условиях титрование водопроводной воды в качестве контрольной пробы.

7.5.3 Обработка результатов

Массовую долю перекиси водорода (Х, %) вычисляют по формуле:

$$X = \frac{(V - V_1) \times 0,0017}{m} \times 100$$

где V - объем раствора марганцовокислого калия концентрации точно C (1/5 KMnO₄)=0,1 моль/дм3, израсходованный на титрование анализируемого раствора, см3;

V, - объем раствора марганцовокислого калия концентрации точно

С ($1/5 \text{ KMnO}_4$)=0,1моль/дм3, израсходованный на титрование контрольной пробы, см3;

0,0017 - масса перекиси водорода, соответствующая 1 см³ раствора калия марганцовокислого концентрации точно с ($1/5 \text{ KMnO}_4$) = 0,1 моль/дм3;

К - поправочный коэффициент раствора калия марганцовокислого концентрации С ($1/5 \text{ KMnO}_4$) = 0.1 моль/дм^3 ;

т - масса анализируемой пробы, г.

За результат анализа средства принимают среднее арифметическое значение результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,2%.

7.6. Определения массовой доли надуксусной кислоты, %

7.6.1. Оборудование, приборы, посуда, реактивы:

Бюретка 1-1-2-10-0,1 по ГОСТ 29251-91;

Колба Кн-1-250-29/32 TC по ГОСТ 25336-82 со шлифованной пробкой; Калий йодистый ГОСТ 4232-74, 10% раствор;

Натрий серноватистокислый (натрия тиосульфат) 5 водный, водный раствор концентрации С ($Na_2S_2O_3$ ◆ $5H_2O$)=0,1 моль/дм³, готовят из фиксанала по ТУ 6-09-2540-87;

Крахмал растворимый ГОСТ 10163-76, водный раствор с массовой долей 0,5%, готовят по ГОСТ 4517-87 п.2.90;

Натрий углекислый безводный по ГОСТ 83-79;

Вода дистиллированная по ГОСТ 6709-72.

7.6.2. Проведение испытания.

Измерение массовой доли надуксусной кислоты проводят титриметрическим методом с использованием йодометрического титрования.

После определения содержания пероксида водорода к оттитрованной перманганатом калия к пробе прибавляют 1,0 г углекислого натрия (или кислого углекислого натрия); интенсивно взбалтывают в течение 2-3 минут до прекращения выделения пузырьков углекислого газа и 10 см³ 10% раствора йодистого калия. Полученный раствор титруют 0.1 н. раствором тиосульфата натрия до изменения окраски от коричневой до светло-желтой, добавляют 5-10 капель 1% раствора крахмала и продолжают титрование до полного исчезновения окраски.

7.6.3. Обработка результатов.

Массовую долю надуксусной кислоты (X1) в процентах вычисляют по формуле:

$$X_1 = \frac{V_1 \times 0,0038 \times 100}{m}$$

где, 0,0038 - масса надуксусной кислоты, соответствующая 1 см3 раствора натрия серноватистокислого концентрации точно $C(Na_2S_2O_3 \times 5H_2O) = 0,1$ моль/дм³ (0,1 H), г;

 V_1 - объем раствора натрия серноватистокислого концентрации точно $C(Na_2S_2O_3 \times 5H_2O) = 0,1$ моль/дм3, израсходованный на титрование, см³; m - навеска средства, г.

За результат анализа принимают среднее арифметическое результатов нескольких параллельных определений, но не менее трех, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,4%. Предельно-допустимое значение относительной суммарной погрешности результатов определения ±3,0% при доверительной вероятности 0,95.

7.7. Определения концентрации рабочего раствора средства «Tank CAD 1415/3»

7.7.1 Отбор проб.

Отбор проб проводят в соответствии с п. 7.1 настоящего Приложения.

- 7.7.2 Измерение концентрации (массовой доли) надуксусной кислоты проводят титриметрическим методом с использованием перманганатометрического и иодометрического титрования.
- 7.7.3 Средства измерений, вспомогательные устройства, материалы, растворы.

Перечень средств измерений, вспомогательных устройств, материалов приведен в п. 7.5.1. и 7.5.2 настоящей инструкции.

7.7.4 Выполнение измерений.

20 см³ (A₁) рабочего раствора переносят в коническую колбу, 25 мл раствора серной кислоты и титруют 0,1н раствором перманганата калия до появления неисчезающего при перемешивании розового окрашивания, после чего в колбу добавляют 1,0 г углекислого натрия (или кислого углекислого натрия); интенсивно взбалтывают в течение 2-3 минут до прекращения выделения пузырьков углекислого газа и 10 см³ 10% раствора йодистого калия. Полученный раствор титруют 0,1 н раствором тиосульфата натрия до изменения окраски от коричневой до светло-желтой. Добавляют 5-10 капель 1% раствора крахмала и продолжают титрование до полного исчезновения окраски.

7.7.5 Массовую долю надуксусной кислоты (X_2) в рабочем растворе рассчитываю по формуле /концентрация рабочего раствора по действующему веществу - НУК:

$$X_2 = \frac{V \times 0.0038 \times 100}{A_1}$$

где V - объем раствора тиосульфата натрия, израсходованный на титрование, см3;

0,0038 - масса надуксусной кислоты, соответствующая 1 см3 раствора серноватисто-кислого натрия концентрации точно С (Na2S203 5 H2O) - 0,1 моль/дм3 (0,1 н), г;

 A_1 - объем рабочего раствора, взятый для анализа, 20 см3.

Результат вычисляют по формуле со степенью округления до первого десятичного знака.

Массовую долю средства в рабочем растворе (X_3) вычисляют по формуле:

$$X_3 = X_2/0.1695$$

где X_2 – концентрация НУК в готовом растворе, %;

0,1695 — коэффициент пересчета;

7.7.6 За результат анализа принимают среднее арифметическое результатов двух параллельных определений, абсолютное расхождение между которыми не превышает допускаемое расхождение, равное 0,8%. 13

Допускаемая относительная суммарная погрешность результатов определения ±

8% при доверительном интервале вероятности Р - 0,95.

г. Ижевск 2021 Всего листов: 4

7.8 Контроль полноты смывания средства с поверхности тушек птиц

Контроль полноты смывания средства с поверхностей тушек птиц проводят визуальным колориметрическим методом с индикатором раствором йодистого калия.

7.8.1 Оборудование, приборы, посуда, реактивы:

Колба киническая вместимостью 250 см^3 по ГОСТ 25336-82;

Цилиндр мерный по ГОСТ 1770-74;

Пипетки по ГОСТ 29228-91

Кислота серная по ГОСТ 4204 чда, хч; разбавленная 1:4 (по объему); Калий йодистый по ГОСТ 4232, хч; водный раствор с концентрацией 10%; Вода питьевая по ГОСТ 24902-81.

7.8.2 Проведение анализа

Воду, используемую для ополаскивания (контрольная проба) и раствор после смывания (смывная вода) объемом 200,0 см³ помещают в колбы на 250 cm^3 , добавляют в каждую 20 cm^3 серной кислоты и 10 cm^3 раствора йодистого калия. Перемешивают. Сравнивают окрашивание на фоне белой бумаги. Раствор, содержащий остаточные количества средства имеет бледно-желтое окрашивание. При остаточных количествах средства смывная вода остается такого же цвета и прозрачности, как и чистая вода (контрольная проба).

8. Физико-химические свойства

- Прозрачная бесцветная жидкость с резким запахом
- рН (1%) не менее 2,5;
- Плотность при 20^{0} С не менее 1,130 г/см³
- Массовая доля надуксусной кислоты 14,00 17,00%

9. Состав

Деионизированная вода, надуксусная кислота, перекись водорода, уксусная

кислота.

10. Данные по экологии

Средство полностью биоразлагаемо.

11. Форма поставки

- 5 кг.
- 23 кг.